New upper bounds on the spectral radius of unicyclic graphs
نویسنده
چکیده
Let G = (V (G), E(G)) be a unicyclic simple undirected graph with largest vertex degree . Let Cr be the unique cycle of G. The graph G− E(Cr ) is a forest of r rooted trees T1,T2, . . .,Tr with root vertices v1, v2, . . ., vr , respectively. Let k(G) = max 1 i r {max{dist(vi , u) : u ∈ V (Ti )}} + 1, where dist(v, u) is the distance from v to u. Let μ1(G) and λ1(G) be the spectral radius of the Laplacian matrix and adjacency matrix of G, respectively. We prove that μ1(G) < + 2 √ − 1 cos π 2k(G)+ 1 , whenever > 2 and λ1(G) < 2 √ − 1 cos π 2k(G)+ 1 , whenever 4 or whenever = 3 and k(G) 4. © 2007 Elsevier Inc. All rights reserved. AMS classification: 5C50; 15A48; 05C05
منابع مشابه
Sharp Bounds on the PI Spectral Radius
In this paper some upper and lower bounds for the greatest eigenvalues of the PI and vertex PI matrices of a graph G are obtained. Those graphs for which these bounds are best possible are characterized.
متن کاملOn the Eccentric Connectivity Index of Unicyclic Graphs
In this paper, we obtain the upper and lower bounds on the eccen- tricity connectivity index of unicyclic graphs with perfect matchings. Also we give some lower bounds on the eccentric connectivity index of unicyclic graphs with given matching numbers.
متن کاملThe second geometric-arithmetic index for trees and unicyclic graphs
Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...
متن کاملOn Zagreb Energy and edge-Zagreb energy
In this paper, we obtain some upper and lower bounds for the general extended energy of a graph. As an application, we obtain few bounds for the (edge) Zagreb energy of a graph. Also, we deduce a relation between Zagreb energy and edge-Zagreb energy of a graph $G$ with minimum degree $delta ge2$. A lower and upper bound for the spectral radius of the edge-Zagreb matrix is obtained. Finally, we ...
متن کاملThe Signless Laplacian Spectral Radius of Unicyclic and Bicyclic Graphs with a Given Girth
Let U(n, g) and B(n, g) be the set of unicyclic graphs and bicyclic graphs on n vertices with girth g, respectively. Let B1(n, g) be the subclass of B(n, g) consisting of all bicyclic graphs with two edge-disjoint cycles and B2(n, g) = B(n, g)\B1(n, g). This paper determines the unique graph with the maximal signless Laplacian spectral radius among all graphs in U(n, g) and B(n, g), respectivel...
متن کاملOn Complementary Distance Signless Laplacian Spectral Radius and Energy of Graphs
Let $D$ be a diameter and $d_G(v_i, v_j)$ be the distance between the vertices $v_i$ and $v_j$ of a connected graph $G$. The complementary distance signless Laplacian matrix of a graph $G$ is $CDL^+(G)=[c_{ij}]$ in which $c_{ij}=1+D-d_G(v_i, v_j)$ if $ineq j$ and $c_{ii}=sum_{j=1}^{n}(1+D-d_G(v_i, v_j))$. The complementary transmission $CT_G(v)$ of a vertex $v$ is defined as $CT_G(v)=sum_{u in ...
متن کامل